Fast singularity preserving methods for integral equations with non-smooth solutions
نویسندگان
چکیده
منابع مشابه
Integral Equations Methods: Fast Algorithms and Applications
Integral equations have long been an invaluable tool in the analysis of linear boundary value problems associated with the Laplace and Helmholtz equations, the equations of elasticity, the time-harmonic Maxwell equations, the Stokes equation, and many more. Numerical methods based on integral equations have become increasingly popular, due in large part to the development of associated fast alg...
متن کاملSingularity preserving Galerkin method for Hammerstein equations with logarithmic kernel
In a recent paper [3], Y. Cao and Y. Xu established the Galerkin method for weakly singular Fredholm integral equations that preserves the singularity of the solution. Their Galerkin method provides a numerical solution that is a linear combination of a certain class of basis functions which includes elements that reflect the singularity of the solution. The purpose of this paper is to extend t...
متن کاملExistence of ground state solutions for a class of nonlinear elliptic equations with fast increasing weight
This paper is devoted to get a ground state solution for a class of nonlinear elliptic equations with fast increasing weight. We apply the variational methods to prove the existence of ground state solution.
متن کاملSupergeometric Convergence of Spectral Collocation Methods for Weakly Singular Volterra and Fredholm Integral Equations with Smooth Solutions
A spectral collocation method is proposed to solve Volterra or Fredholm integral equations with weakly singular kernels and corresponding integro-differential equations by virtue of some identities. For a class of functions that satisfy certain regularity conditions on a bounded domain, we obtain geometric or supergeometric convergence rate for both types of equations. Numerical results confirm...
متن کاملA finite difference method for the smooth solution of linear Volterra integral equations
The present paper proposes a fast numerical method for the linear Volterra integral equations withregular and weakly singular kernels having smooth solutions. This method is based on the approx-imation of the kernel, to simplify the integral operator and then discretization of the simpliedoperator using a forward dierence formula. To analyze and verify the accuracy of the method, weexamine samp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Integral Equations and Applications
سال: 2012
ISSN: 0897-3962
DOI: 10.1216/jie-2012-24-2-213